Chem 1046 Lecture NotesUpdated 17-Sept-2012Chapter 16Principles of Chemical Reactivity: Equilibria

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

NOTE THESE ARE DRAFT LECTURE NOTES!

Chemical Reactions are Reversible (at least some or most of them!) – Use \leftrightarrows They are Dynamic – in constant motion with forward and reverse reactions'

 $[Co(H_2O)_6]^{2+} (RED) + 4 Cl- \leftrightarrows [CoCl_4]^{2-} (BLUE) + 6 H_2O$

Mix CaCl2 and NaHCO3

 $Ca^{2+} + 2 HCO^{3-} \leftrightarrows CaCO_3 \downarrow + CO_2 \uparrow + H2O$

If you add CO₂, the precipitated CaCO₃ will dissolve, the reaction reverses At equilibrium, the rate of the forward reaction = the rate of the reverse reaction

16.2 Equilibrium Constant - K (Note: No Units)

Example: Start with $[H_2] = [I_2] = 0.0175 \text{ mol/L}$ at 425 °C and no HI present.

At equilibrium [H2] = [I2] = 0.0037 mol/L and [HI| = 0.0276 mol/L.

ICE Table

	H2 (g)	+	I2 (g)	⇆	2 HI (g)	
Initial	0.0175		0.0175		0	assume mol/L
Change	-0.0138		-0.0138		+0.0276	
Equilibrium	0.0037		0.0037		0.0276	

 $K = [HI]^2 / [H2] [I2] = [0.0276]^2 / [0.0037] [0.0037] = 56$

 $2 \text{ NOCl }_{(g)} \leftrightarrows 2 \text{ NO}_{(g)} + \text{Cl}_{2 (g)} 2.00 \text{ mol NOCl in 1.00 L flask, at equilibrium NO is 0.66 mol/L What is K? } Watch Stoichiometry }$

$2NOCI(g)$ \square $2NO(g) + CI_2(g)$				
	[NOCI]	[NO]	[Cl ₂]	
Initial	2.00	0	0	
Change	-0.66	+0.66	+0.33	
Equilibrium	1.34	0.66	0.33	

$$K = \frac{[NO]^2[CI_2]}{[NOCI]^2} = \frac{(0.66)^2(0.33)}{(1.34)^2} = 0.080$$

For a reaction at Equilibrium $aA + bB \rightleftharpoons cC + dD$

Equilibrium Constant Expression = $K = [C]^c [D]^d / [A]^a [B]^b$

- 1. Concentrations are at Equilibrium
- 2. Product is in numerator, reactants in denominator
- 3. Each concentration is raised to the power of the coefficient
- 4. The value of K depends on the particular reaction and temp
- 5. Values of K are <u>Dimensionless</u>

Reactions involving Solids – concentration of any solid reactant s or products are not included in the equilibrium expression

$$S(s) + O2(g) \leftrightarrows SO2(g)$$
 $K = [SO2] / [O2]$

Reactions in Solutions – for aqueous solutions, the molar concentration of water is not included in the equilibrium expression

$$NH_3(aq) + H_2O(l) = NH_4^+(aq) + OH^-(aq)$$
 $K = [NH_4^+][OH_-]/[NH_3]$

Gases For PV = nRT, gas concentration = n/V = P / RT, so the Partial Pressure of a gas is related to its concentration and is Kp $H_{2(g)} + I_{2(g)} \leftrightarrows 2 HI_{(g)} Kp = P_{HI}^2 / P_{H2} P_{I2}$

EXAMPLE 16.1 P 725 Write the equilibrium Expression for:

a.	N_{2} (g) + 3 H_{2} (g)	\Rightarrow 2 NH _{3 (g)}
b.	H2CO3 + H2O	\Rightarrow HCO ₃ - + H ₃ O+
c.	CaCO3↓	\Rightarrow CaO \downarrow + CO2 \uparrow

Note No Units

$K = [B]^{b} / [A]^{a}$ K > 1 Product [B] is favored K < 1 Reactant [A] is favored

Table 16.1 Selected Equilibrium Constant Values

Reaction	Equilibrium Constant, K (at 25 °C)	Product- or Reactant-Favored at Equilibrium
Combination Reaction of Nonmetals		
$S(s) + O_2(g) \rightleftharpoons SO_2(g)$	$4.2 imes 10^{52}$	K > 1; product-favored
$2 H_2(g) + O_2(g) \Longrightarrow 2 H_2O(g)$	$3.2 imes 10^{81}$	K > 1; product-favored
$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$	$3.5 imes10^{8}$	K > 1; product-favored
Ionization of Weak Acids and Bases		
$HCO_2H(aq) + H_2O(\ell) \iff HCO_2^-(aq) + H_3O^+(aq)$ formic acid	$1.8 imes 10^{-4}$	K < 1; reactant-favored
$CH_3CO_2H(aq) + H_2O(\ell) \Longrightarrow CH_3CO_2^{-}(aq) + H_3O^{+}(aq)$ acetic acid	$1.8 imes 10^{-5}$	K < 1; reactant-favored
$H_2CO_3(aq) + H_2O(\ell) \Longrightarrow HCO_3^-(aq) + H_3O^+(aq)$ carbonic acid	$4.2 imes 10^{-7}$	K < 1; reactant-favored
$NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ ammonia	$1.8 imes 10^{-5}$	K < 1; reactant-favored
Dissolution of "Insoluble" Solids		
$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$	$3.8 imes 10^{-9}$	K < 1; reactant-favored
$AgCl(s) \iff Ag^+(aq) + Cl^-(aq)$	$1.8 imes 10^{-10}$	K < 1; reactant-favored

Reaction Quotient Q

K is for reactions at Equilibrium Q is for reactions NOT at Equilibrium $aA + bB \rightleftharpoons cC + dD$ $Q = [C]^c [D]^d / [A]^a [B]^b$ The system is at Equilibrium then Q = K**STUDENTS** 0 < K Reactants \rightarrow Products to be at equilibrium Products \rightarrow Reactants to be at equilibrium Q > K

WORK THIS **OUT – PROVE IT**

K = 170 at 298 K

OWL Interactive Example 6.2

At time t, NO2 = 0.015 M, N2O4 = 0.025 M.

 $Q = [N2O4] / [NO2] = 0.025 M / (0.015 M)^2 = 111.11 = 110$

Q = 110, K = 170 so Q is less than K, need to go Reactants to Products

Review Check 16.2

1. $2 \text{ SO}_3(g) = 2 \text{ SO}_2(g) + \text{ O}_2(g)$ Write the Equilibrium Const Expression

2. At 2000 K, for N2 (g) + O2 (g) \Rightarrow 2 NO (g) $K = 4.0 \times 10^{-4}$

In a flask, N₂ = 0.50 M, O₂ is 0.25 M, NO is 4.2×10^{-3} M. Is the system at equilibrium?

 $2 \text{ NO2}(g) \leftrightarrows \text{N2O4}(g)$

16.3 Determining Equilibrium Constant If the concentration of each component is known at equilibrium, K can be calculated

2 SO2 (g)	+	O2 (g)	t)	2 SO3 (g)	852 K
3.61 x 10 ⁻³ mol/L		6.11 x 10 ⁻⁴ m	ol/L	1.01 x 10 ⁻² mol/L	
$K = [SO_3]^2 / [SO_2]^2 [O_2]$	=	(1.01 X 10 ⁻²) ²	/ (3.6	1 x 10 ⁻³) ² (6.11 x 10 ⁻⁴)	$= 1.28 \ge 10^4$

K is large, so, products are favored

Now, put 1.00 mol of SO2 (g) and 1.00 mol of O2 (g) in a 1.00 L flask at 1000 K, at equilibrium there is 0.925 mol SO3 (g). What is K?

Initial Change	2 SO2 (g) 1.00 mol	+	O2 (g) 1.00 mol	ţ	2 SO3 (g)	1 Liter Flas	k, 1000 K
Equilibrium					0.925 mol		
Initial Change Equilibrium	2 SO2 (g) 1.00 mol -2x 1.00 - 2x	+	O2 (g) 1.00 mol -x 1.00 - x	↓	2 SO3 (g) 0 +2x 0.925 mol	1 Liter Flas	k, 1000 K
					2x = 0.925 r	nol ther	a x = 0.463 mol
Equilibrium Equilibrium	1.00 – 2 * 0 0.075	.463	1.00 – 0.463 0.54	3	0.925 0.925		
	$K = [SO3]^2$	/ $[SO_2]^2 [O_2]$	$= (0.925)^2/$	(0.075	(0.54) = 2.8	$X 10^{2}$	
Interactive	e Example 1	6.3	2 Fe ³⁺ + 3	[- ≒ 2	$2 \text{ Fe}^{2+} + \text{ I}_3^{-}$		
Initia	l Concentrati	on $Fe^{3+} = 0.20$	00 M, I ⁻ = 0.3	300 M	. At equilibriu	m I ₃ - 0.0866	Μ
GIVE Initia Chan	ENS l	2 Fe ³⁺ + 0.200 M	3 I - 0.300 M	4	2 Fe²⁺ + ?	I ₃ - ?	
Equil	ibrium				0.08	66 M	
SOLU Initia Chang Equili	U TION l ge ibrium	2 Fe ³⁺ + 0.200 M -2x 0.200 - 2x 0.027	3 I- 0.300 M -3x 0.300 - 3x 0.040	\$	2 Fe ²⁺ + ? +2x 2x 0.173	I ₃ - ? +x 0.0866 M 0.0866	x = 0.866 M
K = [I	$Fe^{2+}]^2 [I_3^-] / [$	$[Fe^{3+}]^2 [I^-]^3 =$	$(0.173)^2(0.0)$	0866)	$/(0.027)^2(0.027)^2$	$(40)^3 = 5.6 \text{ x}$	104
Example 10 Start with 10	6.4) atm pressur	$2 H_2S \rightleftharpoons 2$ e of H_2S, at eq	H2 + S2 Juilibrium pai	(all g rtial pr	gases) ressure of S2 is	5 0.020 atm.	What is Kp
Initia Chang Equili Kn = 1	l ge ibrium (Pn2)2 Ps2 / (P	2 H2S 19 -2x 10.0 - 2x 10.0 - 2 (0.0 $(2_{H_{2S}})^2 = (0.040)$	020) – 9.96 at	tm 2.06)²	2 H2 + 0+2X2 (0.020)0.040= 3.2 X 10-7	S2 9 +x 0.020	x = 0.020
03-July-12	(- 112) + 02 / (1		Page 4 of 8	,.,.,	0		

16.4 Using Equilibrium Constants in Calculations $H_{2(g)} + I_{2(g)} \leftrightarrows 2 HI_{(g)}$ At 425 °C, 1.00 mol of H2 and I2 put in a 0.500 L flask. K = 55.64, what is the equilibrium []

⇆ $H_{2(g)} +$ 2 HI (g) $I_{2(g)}$ Initial 2.00 M 2.00 M 0 Change -X +2x-X Equilibrium 2.00 – X 2.00 – X 2X $K = 55.64 = [HI_{(g)}]^2 / [H_{2(g)}] [I_{2(g)}] = (2x)^2 / (2.00 - x) (2.00 - x) = (2x)^2 / (2.00 - x)^2$ 7.459 = 2x / (2.00 - x)Take square root of both sides 7.549(2.00 - x) = 2x \rightarrow 14.91 - 7.549x = 2x \rightarrow 14.9 = 9.549 xx = 1.56 (book gets 1.58). $[H_{2(g)}] = [I_{2(g)}] = 2.00 - x = 0.44 M$ $[HI_{(g)}] = 2x = 3.12 \text{ M}$ **Using a Quadratic** $PCl_{5 (g)} \rightleftharpoons PCl_{3 (g)} + Cl_{2 (g)}$ $PCl_{5} = 1.60 \text{ M}, \text{ K}=1.20.$ What is [] of products at equilibrium PCl₅(g) ⇆ $PCl_{3}(g) +$ $Cl_{2}(g)$ Initial 1.60 M 0 0 Change -X +X+XEquilibrium 1.60 – x Х Х $K = [PCl_3] [Cl_2] / [PCl_5] = 1.20 = x * x / (1.60 - x)$ $x^2 = 1.20 (1.60 - x) = 1.92 - 1.20 x$ $x^2 + 1.20x - 1.92 = 0$ Solve for X = Roots are 0.910 and -2.11. So x = 0.910 M

 $[PCl_5] = 1.60 - 0.910 = 0.69 M$ $[PCl_3] = [Cl_2] = x = 0.91 M$

Realistic approximation: $I_{2(g)} \leftrightarrows 2I_{(g)}$

 $K = 5.6 \times 10^{-12}$ at 500 K [K is a small number, Not very much product]

Initial I_2 is 0.45 M, what are equilibrium concentrations?

	I _{2 (g)}	ţ	2 I (g)
Initial	0.45 M		0
Change	-X		+2X
Equilibrium	0.45 –x		2X

 $K = 5.6 \times 10^{-12} = [I_{(g)}]^2 / [I_{2(g)}] = (2x)^2 / (0.45 - x)$

ASSUME: Since K is very very small, the amount of I (g) is very small and x is very small

Therefore (0.45 - x) is 0.45 minus a very small number, so we can ignore x in (0.45 - x)

5.6 x 10⁻¹² = $(2x)^2 / 0.45 \rightarrow 2.52 \times 10^{-12} = 4x^2$ \rightarrow 6.3 x 10⁻¹³ = x² $x = 7.9 \times 10^{-7}$ Now Prove the Assumption $[I_{(g)}] = 0.45 - X$ $= 0.45 - 7.9 \times 10^{-7} =$ Still equals 0.45 M Page 5 of 8

03-July-12

 $A \leftrightarrows B + C$ K = [B] [C] / [A]

If K is less than 1 and (100 * K) < [A] then you can make the above assumption

INTERACTIVE EXAMPLE 16.6

$$N_{2(g)} + O_{2(g)} \leftrightarrows 2 NO_{(g)}$$

At 1500 K, K = 1.0 x 10⁻⁵ Air is 80% N_2 and 20% O_2 in Moles/L. What is the equilibrium concentration of all.

	$N_{2(g)} +$	O _{2 (g)}	ţ	2 NO (g)
Initial Change Equilibrium	0.80 -x 0.80 - y	0.20 -x 0.20 - x	0 +2X 2V	
Equinorium	0.00 - x	0.20 - X	21	

 $K = 1.0 \times 10^{-5} = [NO]^2 / [N2][O2] = (2x)^2 / (0.80 - x) (0.20 - x)$

Per guidelines, K is less than 1 and 100 * K = 1.0×10^{-3} is less than [N2] which is 0.80

K = 1.0 x 10 ⁻⁵ = $(2x)^2 / (0.80) (0.20)$	$1.6 \ge 10^{-6} = 4x^2$	$x = 6.3 \times 10^{-6}$
$[N2] = 0.80 - 6.3 \times 10^{-6} = 0.80 M$	[O2] = 0.20 - 6.3	x 10 ⁻⁶ = 0.20 M
$[NO] = 2x = 1.3 \times 10^{-3}$		

Students Prove the Assumption and Prove the answer by solving the Quadratic.

16.5 Balanced Equations and Equilibrium Constants

1. Stoichiometric coef are multiplied by $C(s) + \frac{1}{2}O_2 = CO(s)$	$K_{\text{new}} = (K_{\text{old}})^{\text{factor}}$ $K_{1} = [CO] / [O]^{1/2} = 4.6 \times 10^{23}$	at 25°C
$C(3) + 7202 \rightarrow CO(g)$	$KI = [CO] / [O] / = 4.0 \times 10^{\circ}$	at 25 C
$2 C(s) + O2 \implies 2 CO(g)$	$K2 = [CO]^2 / [O] = 2.1 \times 10^{47}$	at 25°C
$K_1 = [CO] / [O]^{1/2} = \{ [CO]^{1/2} \}$	$O^{2} / [O]^{2} - K_{2}^{2}$	

2. The equilibrium constants for a reaction and its reverse are reciprocals of each other $HCO_2H + H_2O \leftrightarrows HCO_2^- + H_3O^+$ $K_1 = [HCO_2^-] [H_3O^+] / [HCO_2H] = 1.8 \times 10^{-4} 25^{\circ}C$

 $\begin{array}{rcrcrcr} HCO_{2^{-}} + & H_{3}O^{+} \leftrightarrows & HCO_{2}H + & H_{2}O & K_{2} = \left[HCO_{2}H\right] / & \left[HCO_{2^{-}}\right] \left[& H_{3}O^{+} & \right] = 5.6 \text{ x } 10^{3} \\ & K_{2} = 1 / & K_{1} \end{array}$

3. If you add two reactions, you multiply the equilibrium constants

 AgCl
 \leftrightarrows Ag+ + Cl K1 = [Ag+] [Cl-] = 1.8 x 10^{-10}

 Ag+ + 2 NH₃
 \leftrightarrows [Ag(NH3)2+]
 K2 = [Ag(NH3)2+] / [Ag+] [NH₃]₂ = 1.1 x 10⁷

 AgCl + 2 NH₃
 \backsim [Ag(NH3)2+]
 K2 = [Ag(NH3)2+] / [Ag+] [NH₃]₂ = 1.1 x 10⁷

 AgCl + 2 NH₃
 \backsim [Ag(NH3)2+]
 [Ag(NH3)2+] / [Ag+] [NH₃]₂ = [Cl-] [Ag(NH3)2+] / [NH₃]

 Knet = K1 * K2 = [Ag+] [Cl-] [Ag(NH3)2+] / [Ag+] [NH₃]₂ = [Cl-] [Ag(NH3)2+] / [NH₃]
 [NH₃]

Students do Example 16.7

03-July-12

16.6 Disturbing a Chemical Equation

Disturbance	Bring Back to	Effect on	Effect on K
Equilibrium		Equilibrium	
Increase T	Reaction consumes the	Shift in Endothermic	Changes K
	energy	direction	
Increase T	Energy is generated by	Shift in Exothermic	Changes K
	the reaction	direction	
Add peactant	Reactant is consumed	[Product] is increased	No Change in K
Add product	Product is consumed	[Reactant] is	No Change in K
		increased	
For a gas increase	Pressure Decreases	Composition changes	No Change in K
volume or increase		to reduce # of gas	
pressure		molecules	
Increase volume or	Pressure Increases	Composition changes	No Change in K
decrease pressure		to increase # of gas	
		molecules	

Changes are compensated for by Le Chatelier's Principle

Interactive Example 16.8

Butane \leftrightarrows Isobutazne K = 2.5

1.00 L flask, 0.500 mol/L Butane, 1.25 mol/L isobutene is at equilibrium.

Then 1.50 mol of Butane is added, ? conc of each.

	Butane	↓	Isobutazne
Initial	0.500		1.25
Conc adding Butane	0.500 + 1.50		1.25
Change	0.500 + 1.50	- x	1.25 + x
K = 2.5 = [Isobutane] / [Be	utane] = (1.25	+ x) /	(0.500 + 1.50 - x)
2.50(2.00 - x) = 1.25 + x	\rightarrow	5.00 -	-2.50 x = 1.25 + x
5.00 - 1.25 = x + 2.50 x	\rightarrow	3.75 =	3.50 x
x = 1.07 mol/L			
Butane = 0.500 + 1.50 - x	= 0.500 + 1.5	0 – 1.0	7 = 1.07 mol/L
Isobutane = $1.25 + x = 1.25$	5 + 1.07		= 2.32 mol/L

Effect of Volume Changes on Gas Phase Equilibrium

 $2 \text{ NO}_{2 (g)} \leftrightarrows \text{N}_2\text{O}_{4 (g)}$ $K = [N_2\text{O}_4] / [\text{NO}_2]^2 = 170 \text{ at } 290 \text{ K}$

 If we half the volume of the flask -> Both gas concentrations will double

 Start:
 $[N_2O_4] = 0.0280$ $[NO_2] = 0.0128$

 Volume Halved
 $[N_2O_4] = 0.0560$ $[NO_2] = 0.0256$
 $Q = [N_2O_4] / [NO_2]^2 = (0.0256)^2 / (0.0560) = 84.5$ K = 170 is greater than Q = 84.5.

1. For gases, for a volume decrease, there is a change in equilibrium to have a smaller number of gas molecules

2. For a volume increase, there is a change in equilibrium to have a larger number of gas molecules

3. For no change in volume, if there is no change in the number of gas molecules going from reactants to products, there is no effect. $H_{2 (g)} + I_{2 (g)} \Rightarrow 2 HI_{(g)}$

Effect of Temperature Changes on Equilibrium Composition

Need to know if the reaction is Exothermic or Endothermic $N_{2 (g)} + O_{2 (g)} \leftrightarrows 2 \text{ NO} \qquad \Delta H = + 180.6 \text{ kJ/mol-rxn} = \text{Endothermic}$ $N_{2 (g)} + O_{2 (g)} + \text{HEAT} \leftrightarrows 2 \text{ NO} \qquad Q = [\text{NO}]_2 / [\text{N}_2] [\text{O}_2] [\text{HEAT}]$ If we increase HEAT, Q will decrease. Then K is greater than Q, we shift to form Product $2 \text{ NO}_{2 (g)} \leftrightarrows N_2O_4 (g) \qquad \Delta H = -57.1 \text{ kJ/mol-rxhn} = \text{Endothermic}$

 $2 \text{ NO}_{2 (g)} \leftrightarrows \text{N}_{2}\text{O}_{4 (g)} + \text{HEAT}$ $Q = [N_{2}O_{4}][\text{HEAT}] / [NO_{2}]^{2}$

If we increase HEAT, Q will increase. Then Q is greater than K, we shift to form Reactant

1. Increase the temperature of a system at equilibrium, the equilibrium will shift in the direction that absorbs energy as heat, in the Endothermic Direction

2. Decrease the temperature of the system, the equilibrium will shift in the direction that releases energy as heat – in the Exothermic direction

3. Changing temperature changes K