NOTE THESE ARE DRAFT LECTURE NOTES!

Chemical Reactions are Reversible (at least some or most of them!) - Use \leftrightarrows They are Dynamic - in constant motion with forward and reverse reactions'

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{RED})+4 \mathrm{Cl}-\leftrightarrows \quad\left[\mathrm{CoCl}_{4}\right]^{2-}(\mathrm{BLUE})+6 \mathrm{H}_{2} \mathrm{O}
$$

Mix CaCl2 and NaHCO_{3}

$$
\mathrm{Ca}^{2+}+2 \mathrm{HCO}^{-}-\mathrm{CaCO}_{3} \downarrow+\mathrm{CO} 2 \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

If you add CO 2 , the precipitated CaCO_{3} will dissolve, the reaction reverses At equilibrium, the rate of the forward reaction $=$ the rate of the reverse reaction

16.2 Equilibrium Constant - K (Note: No Units)

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$

$\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g}) \leftrightarrows \quad 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{K}=[\mathrm{HI}]^{2} /[\mathrm{H} 2][\mathrm{I} 2] \quad \mathrm{K}$ is constant at a given T

Example: Start with [H2] $=[\mathrm{I} 2]=0.0175 \mathrm{~mol} / \mathrm{L}$ at $425^{\circ} \mathrm{C}$ and no HI present.
At equilibrium $[\mathrm{H} 2]=[\mathrm{I} 2]=0.0037 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{HI} \mid=0.0276 \mathrm{~mol} / \mathrm{L}$.
ICE Table

	$\mathbf{H 2}(\mathbf{g})$	+	I2 (g)	\leftrightarrows	$\mathbf{2 ~ H I ~ (g) ~}$	
Initial	0.0175		0.0175		0	assume mol/L
Change	-0.0138		-0.0138		+0.0276	
Equilibrium	0.0037		0.0037		0.0276	

$\mathrm{K}=[\mathrm{HI}]^{2} /[\mathrm{H} 2][\mathrm{I} 2]=[0.0276]^{2} /[0.0037][0.0037]=56$
Note No Units
 What is K? Watch Stoichiometry

$$
2 \mathrm{NOCl}(\mathrm{~g}) \square \quad 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

	$[\mathrm{NOCl}]$	$[\mathrm{NO}]$	$\left[\mathrm{Cl}_{2}\right]$
Initial	2.00	0	0
Change	-0.66	+0.66	+0.33
Equilibrium	1.34	0.66	0.33

$$
\mathrm{K}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCI}]^{2}}=\frac{(0.66)^{2}(0.33)}{(1.34)^{2}}=0.080
$$

For a reaction at Equilibrium $\quad \mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD}$
Equilibrium Constant Expression $=K=[C]^{c}[D]^{d} /[A]^{a}[B]^{b}$

1. Concentrations are at Equilibrium
2. Product is in numerator, reactants in denominator
3. Each concentration is raised to the power of the coefficient
4. The value of K depends on the particular reaction and temp
5. Values of K are Dimensionless

Reactions involving Solids - concentration of any solid reactant s or products are not included in the equilibrium expression

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O} 2(\mathrm{~g}) \leftrightarrows \mathrm{SO} 2(\mathrm{~g}) \quad \mathrm{K}=[\mathrm{SO} 2] /[\mathrm{O} 2]
$$

Reactions in Solutions - for aqueous solutions, the molar concentration of water is not included in the equilibrium expression

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}_{-}\right] /\left[\mathrm{NH}_{3}\right]
$$

Gases \quad For $P V=n R T$, gas concentration $=n / V=P / R T$, so the Partial Pressure of a gas is related to its concentration and is $\mathrm{Kp} \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}^{\leftrightarrows} 2 \mathrm{HI}_{(\mathrm{g})} \quad \mathrm{Kp}=\mathrm{P}_{\mathrm{HI}^{2}} / \mathrm{P}_{\mathrm{H} 2} \mathrm{P}_{\mathrm{I} 2}$

EXAMPLE 16.1 P 725 Write the equilibrium Expression for:
a. $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
b. $\quad \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H} 2 \mathrm{O} \quad \leftrightarrows \mathrm{HCO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{CaCO}_{3} \downarrow \quad \leftrightarrows \mathrm{CaO} \downarrow+\mathrm{CO} 2 \uparrow$

Meaning of K

$\mathrm{aA} \leftrightarrows \mathrm{bB} \quad \mathrm{K}=[\mathrm{B}]^{\mathrm{b}} /[\mathrm{A}]^{\mathrm{a}}$
$\mathrm{K}>1$ Product [B] is favored
$\mathrm{K}<1$ Reactant [A] is favored
Table 16.1 Selected Equilibrium Constant Values

Reaction	Equilibrium Constant, K (at $25^{\circ} \mathrm{C}$)	Product- or Reactant-Favored at Equilibrium
Combination Reaction of Nonmetals		
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{SO}_{2}(\mathrm{~g})$	4.2×10^{52} ...	$K>1$; product-favored
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	3.2×10^{81}	$K>1$; product-favored
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	3.5×10^{8}	$K>1$; product-favored
Ionization of Weak Acids and Bases		
$\begin{aligned} & \mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\ & \text { formic acid } \end{aligned}$	1.8×10^{-4}	$K<1$; reactant-favored
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ acetic acid	1.8×10^{-5}	$K<1$; reactant-favored
$\begin{aligned} & \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\ & \text { carbonic acid } \end{aligned}$	4.2×10^{-7}	$K<1$; reactant-favored
$\begin{aligned} & \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & \text { ammonia } \end{aligned}$	1.8×10^{-5}	$K<1$; reactant-favored
Dissolution of "Insoluble" Solids		
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$	3.8×10^{-9}	$K<1$; reactant-favored
$\mathrm{AgCl}(\mathrm{s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	1.8×10^{-10}	$K<1$; reactant-favored

Reaction Quotient Q

K is for reactions at Equilibrium $\quad \mathrm{Q}$ is for reactions NOT at Equilibrium
$\mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD}$
$\mathrm{Q}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$
$\mathrm{Q}=\mathrm{K} \quad$ The system is at Equilibrium then
$\mathrm{Q}<\mathrm{K} \quad$ Reactants \rightarrow Products to be at equilibrium
Q > K Products \rightarrow Reactants to be at equilibrium

STUDENTS
 WORK THIS OUT - PROVE IT

OWL Interactive Example 6.2 $2 \mathrm{NO} 2(\mathrm{~g}) \leftrightarrows \mathrm{N} 2 \mathrm{O} 4(\mathrm{~g}) \quad \mathrm{K}=170$ at 298 K
At time $\mathrm{t}, \mathrm{NO} 2=0.015 \mathrm{M}, \mathrm{N} 2 \mathrm{O} 4=0.025 \mathrm{M}$.
$\mathrm{Q}=[\mathrm{N} 2 \mathrm{O} 4] /[\mathrm{NO} 2]=0.025 \mathrm{M} /(0.015 \mathrm{M})^{2}=111.11=110$
$\mathrm{Q}=110, \mathrm{~K}=170$ so Q is less than K , need to go Reactants to Products

Review Check 16.2

1. $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \quad$ Write the Equilibrium Const Expression
2. At 2000 K , for $\mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{K}=4.0 \times 10^{-4}$

In a flask, $\mathrm{N} 2=0.50 \mathrm{M}, \mathrm{O} 2$ is $0.25 \mathrm{M}, \mathrm{NO}$ is $4.2 \times 10^{-3} \mathrm{M}$. Is the system at equilibrium?
16.3 Determining Equilibrium Constant

If the concentration of each component is known at equilibrium, K can be calculated

$$
\begin{array}{ccccc}
\mathbf{2 ~ S O 2 ~ (g) ~} & + & \mathbf{O 2}(\mathbf{g}) \quad \leftrightarrows & \mathbf{2 ~ S O 3}(\mathbf{g}) & \mathbf{8 5 2} \mathbf{~ K} \\
3.61 \times 10^{-3} \mathrm{~mol} / \mathrm{L} & & 6.11 \times 10^{-4} \mathrm{~mol} / \mathrm{L} & 1.01 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \\
\mathrm{~K}=\left[\mathrm{SO}_{3}\right]^{2} /[\mathrm{SO} 2]^{2}[\mathrm{O} 2]= & \left(1.01 \times 10^{-2}\right)^{2} /\left(3.61 \times 10^{-3}\right)^{2}\left(6.11 \times 10^{-4}\right)=1.28 \times 10^{4} \\
\text { K is large, so, products are favored }
\end{array}
$$

Now, put 1.00 mol of $\mathrm{SO} 2(\mathrm{~g})$ and 1.00 mol of $\mathrm{O} 2(\mathrm{~g})$ in a 1.00 L flask at 1000 K , at equilibrium there is $0.925 \mathrm{~mol} \mathrm{SO}_{3}(\mathrm{~g})$. What is K ?

	$2 \mathrm{SO2}$ (g)	+	O2 (g)	2 SO 3 (g)	
Initial	1.00 mol		1.00 mol		1 Liter Flask, 1000 K
Change					
Equilibrium				0.925 mol	

	$2 \mathrm{SO2}$ (g)	+	O2 (g)	\leftrightarrows	2 SO 3 (g)	
Initial	1.00 mol		1.00 mol		$0 \quad 1 \mathrm{~L}$	1 Liter Flask, 1000 K
Change	-2x		-x		+2x	
Equilibrium	1.00-2x		$1.00-\mathrm{x}$		0.925 mol	
					$2 \mathrm{x}=0.925 \mathrm{~mol}$	l then $\mathrm{x}=0.463 \mathrm{~mol}$
Equilibrium	$1.00-2 * 0.463$		1.00-0.463		0.925	
Equilibrium	0.075		0.54		0.925	

$$
\mathrm{K}=\left[\mathrm{SO}_{3}\right]^{2} /[\mathrm{SO} 2]^{2}[\mathrm{O} 2]=(0.925)^{2} /(0.075)^{2}(0.54)=2.8 \times 10^{2}
$$

Interactive Example 16.3
$2 \mathrm{Fe}^{3+}+3 \mathrm{I}^{-} \leftrightarrows 2 \mathrm{Fe}^{2+}+\mathrm{I}_{3}^{-}$
Initial Concentration $\mathrm{Fe}^{3^{+}}=0.200 \mathrm{M}, \mathrm{I}^{-}=0.300 \mathrm{M}$. At equilibrium $\mathrm{I}_{3}-0.0866 \mathrm{M}$

GIVENS	$2 \mathrm{Fe}^{++}+$	$3 \mathrm{I}^{-}$	\leftrightarrows		$\mathrm{I}_{3}{ }^{-}$
Initial	0.200 M	0.300 M		?	

Change
Equilibrium
0.0866 M

Example 16.4 $2 \mathrm{H} 2 \mathrm{~S} \leftrightarrows 2 \mathrm{H} 2+\mathrm{S} 2 \quad$ (all gases)
Start with 10 atm pressure of H 2 S , at equilibrium partial pressure of S 2 is 0.020 atm . What is Kp

	2 H 2 S	$2 \mathrm{H} 2+$	S2	
Initial	19	0	9	
Change	-2x	+2x	+x	
Equilibrium	10.0-2x	2 (0.020)	0.020	$\mathrm{x}=0.020$
	10.0-2 (0.020)-9.96 atm	0.040		
$\mathrm{Kp}=\left(\mathrm{P}_{\mathrm{n} 2}\right)^{2} \mathrm{P}_{\mathrm{s} 2} /\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}\right)^{2}=(0.040)^{2}(0.02 \mathrm{O}) /(9.96)^{2}=3.2 \times 10^{-7}$				
-12 Page 4 of 8				

16.4 Using Equilibrium Constants in Calculations $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$ At $425^{\circ} \mathrm{C}, 1.00 \mathrm{~mol}$ of H 2 and I 2 put in a 0.500 L flask. $\mathrm{K}=55.64$, what is the equilibrium []

	$\mathrm{H}_{2}(\mathrm{~g})+$	$\mathbf{I}_{2}(\mathrm{~g})$	\leftrightarrows	$\mathbf{2 ~ H I}(\mathrm{g})$
Initial	2.00 M	2.00 M		o
Change	-x	-x		+2 x
Equilibrium	$2.00-\mathrm{x}$	$2.00-\mathrm{x}$		2 x

$\mathrm{K}=55.64=\left[\mathrm{HI}_{(\mathrm{g})}\right]^{2} /\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]=(2 \mathrm{x})^{2} /(2.00-\mathrm{x})(2.00-\mathrm{x})=(2 \mathrm{x})^{2} /(2.00-\mathrm{x})^{2}$
Take square root of both sides $\quad 7.459=2 x \quad /(2.00-x)$
$7.549(2.00-\mathrm{x})=2 \mathrm{x} \quad \rightarrow \quad 14.91-7.549 \mathrm{x}=2 \mathrm{x} \quad \rightarrow \quad 14.9=9.549 \mathrm{x}$
$x=1.56$ (book gets 1.58)
$\left[\mathrm{H}_{2}(\mathrm{~g})\right]=\left[\mathrm{I}_{2}(\mathrm{~g})\right]=2.00-\mathrm{x}=0.44 \mathrm{M} \quad[\mathrm{HI}(\mathrm{g})]=2 \mathrm{x}=3.12 \mathrm{M}$
Using a Quadratic
$\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrows \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad \mathrm{PCl}_{5}=1.60 \mathrm{M}, \mathrm{K}=1.20$.
What is [] of products at equilibrium

Initial
Change
Equilibrium

$\mathbf{P C l}_{5}(\mathrm{~g})$	\leftrightarrows	$\mathbf{P C l}_{\mathbf{3}(\mathrm{g})}+$	$\mathbf{C l}_{\mathbf{2}} \mathbf{(\mathrm { g })}$
1.60 M		o	o
-x		+x	+x
$1.60-\mathrm{x}$		x	x

$\mathrm{K}=\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right] /\left[\mathrm{PCl}_{5}\right]=1.20=\mathrm{x} * \mathrm{x} /(1.60-\mathrm{x})$
$\mathrm{x}^{2}=1.20(1.60-\mathrm{x})=1.92-1.20 \mathrm{x} \quad \mathrm{x}^{2}+1.20 \mathrm{x}-1.92=0$

Solve for $X=$

Roots are 0.910 and -2.11. \quad So $\mathrm{x}=0.910 \mathrm{M}$
$\left[\mathrm{PCl}_{5}\right]=1.60-0.910=0.69 \mathrm{M} \quad\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\mathrm{x}=0.91 \mathrm{M}$
Realistic approximation: $\quad \mathrm{I}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{I}(\mathrm{g})$
$\mathrm{K}=5.6 \times 10^{-12}$ at $500 \mathrm{~K}[\mathrm{~K}$ is a small number, Not very much product]
Initial I_{2} is 0.45 M , what are equilibrium concentrations?

	$\mathbf{I}_{\mathbf{2}}(\mathbf{g})$	\leftrightarrows	$\mathbf{2} \mathbf{I}(\mathbf{g})$
Initial	0.45 M		0
Change	-x		+2 x
Equilibrium	$0.45-\mathrm{x}$		2 x

$\mathrm{K}=5.6 \times 10^{-12}=[\mathrm{I}(\mathrm{g})]^{2} /\left[\mathrm{I}_{2}(\mathrm{~g}]=(2 \mathrm{x})^{2} /(\mathrm{O} .45-\mathrm{x})\right.$
ASSUME: Since K is very very small, the amount of $I_{(g)}$ is very small and x is very small Therefore ($0.45-\mathrm{x}$) is 0.45 minus a very small number, so we can ignore x in ($0.45-\mathrm{x}$)

$$
5.6 \times 10^{-12}=(2 \mathrm{x})^{2} / 0.45 \rightarrow 2.52 \times 10^{-12}=4 \mathrm{x}^{2} \quad \rightarrow 6.3 \times 10^{-13}=\mathrm{x}^{2}
$$

$x=7.9 \times 10^{-7} \quad$ Now Prove the Assumption
$\left[\mathrm{I}_{(\mathrm{g})}\right]=0.45-\mathrm{x} \quad=0.45-7.9 \times 10^{-7}=$ Still equals 0.45 M
$\mathrm{A} \leftrightarrows \mathrm{B}+\mathrm{C} \quad \mathrm{K}=[\mathrm{B}][\mathrm{C}] /[\mathrm{A}]$
If K is less than 1 and (100 * K) < [A] then you can make the above assumption

INTERACTIVE EXAMPLE 16.6
 $$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{NO}_{(\mathrm{g})}
$$

At $1500 \mathrm{~K}, \mathrm{~K}=1.0 \times 10^{-5} \quad$ Air is $80 \% \mathrm{~N}_{2}$ and $20 \% \mathrm{O}_{2}$ in Moles/L.
What is the equilibrium concentration of all.

	$\mathbf{N}_{\mathbf{2}}^{(\mathrm{g})}+$	$\mathrm{O}_{\mathbf{2}(\mathrm{g})}$	\leftrightarrows
Initial	0.80	0.20	0
Change	-x	-x	+2x
Equilibrium	0.80-x	0.20-x	2 x

$\mathrm{K}=1.0 \times 10^{-5}=[\mathrm{NO}]^{2} /[\mathrm{N} 2][\mathrm{O} 2]=(2 \mathrm{x})^{2} /(0.8 \mathrm{o}-\mathrm{x})(\mathrm{o} .2 \mathrm{O}-\mathrm{x})$
Per guidelines, K is less than 1 and $100^{*} \mathrm{~K}=1.0 \times 10^{-3}$ is less than [N2] which is 0.80
$\mathrm{K}=1.0 \times 10^{-5}=(2 \mathrm{x})^{2} /(0.80)(0.20)$
$1.6 \times 10^{-6}=4 \mathrm{x}^{2} \quad \mathrm{x}=6.3 \times 10^{-6}$
$[\mathrm{N} 2]=0.80-6.3 \times 10^{-6}=0.80 \mathrm{M}$
$[\mathrm{O} 2]=0.20-6.3 \times 10^{-6}=0.20 \mathrm{M}$
$[\mathrm{NO}]=2 \mathrm{x}=1.3 \times 10^{-3}$
Students Prove the Assumption and Prove the answer by solving the Quadratic.

16.5 Balanced Equations and Equilibrium Constants

1. Stoichiometric coef are multiplied by a factor (2), $\mathrm{K}_{\text {new }}=\left(\mathrm{K}_{\text {old }}\right)^{\text {factor }}$

$$
\begin{array}{cl}
\mathrm{C}(\mathrm{~s})+1 / 2 \mathrm{O} 2 \leftrightarrows \mathrm{CO}(\mathrm{~g}) & \mathrm{K} 1=[\mathrm{CO}] /[\mathrm{O}]^{1 / 2}=4.6 \times 10^{23}
\end{array} \text { at } 25^{\circ} \mathrm{C} ~\left(\mathrm{~K} 2=[\mathrm{CO}]^{2} /[\mathrm{O}]=2.1 \times 10^{47} \quad \text { at } 25^{\circ} \mathrm{C} .\right.
$$

2. The equilibrium constants for a reaction and its reverse are reciprocals of each other

$$
\begin{array}{ll}
\mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & \mathrm{K}_{1}=\left[\mathrm{HCO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{HCO}_{2} \mathrm{H}\right]=1.8 \times 10^{-4} 25^{\circ} \mathrm{C} \\
\mathrm{HCO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} & \begin{array}{l}
\mathrm{K}_{2}=\left[\mathrm{HCO}_{2} \mathrm{H}\right] /\left[\mathrm{HCO}_{-}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.6 \times 10^{3} \\
\mathrm{~K}_{2}=1 / \mathrm{K}_{1}
\end{array}
\end{array}
$$

3. If you add two reactions, you multiply the equilibrium constants

$$
\begin{aligned}
& \mathrm{AgCl} \quad \leftrightarrows \mathrm{Ag}++\mathrm{Cl}-\mathrm{K} 1=[\mathrm{Ag}+][\mathrm{Cl}-]=1.8 \times 10^{-10} \\
& \mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \leftrightarrows[\mathrm{Ag}(\mathrm{NH} 3) 2+] \quad \mathrm{K} 2=\left[\mathrm{Ag}(\mathrm{NH} 3)_{2+}+\right] /\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]_{2}=1.1 \times 10^{7} \\
& \mathrm{AgCl}+2 \mathrm{NH}_{3} \leftrightarrows\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) 2+\right] \\
& \mathrm{K}_{\text {net }}=\mathrm{K}_{1} * \mathrm{~K} 2=[\mathrm{Ag}+][\mathrm{Cl}-][\mathrm{Ag}(\mathrm{NH} 3) 2+] /\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]_{2}=[\mathrm{Cl}-]\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) 2+\right] /\left[\mathrm{NH}_{3}\right] \\
& \mathrm{K}_{\text {net }}=\mathrm{K} 1 * \mathrm{~K} 2=2.0 \times 10^{-3}
\end{aligned}
$$

Students do Example 16.7

16.6 Disturbing a Chemical Equation

Changes are compensated for by Le Chatelier's Principle

Disturbance Equilibrium	Bring Back to	Effect on Equilibrium	Effect on K
Increase T	Reaction consumes the energy	Shift in Endothermic direction	Changes K
Increase T	Energy is generated by the reaction	Shift in Exothermic direction	Changes K
Add peactant	Reactant is consumed	[Product] is increased	No Change in K
Add product	Product is consumed	[Reactant] is increased	No Change in K
For a gas increase volume or increase pressure	Pressure Decreases	Composition changes to reduce \# of gas molecules	No Change in K
Increase volume or decrease pressure	Pressure Increases	Composition changes to increase \# of gas molecules	No Change in K

Interactive Example $16.8 \quad$ Butane \leftrightarrows Isobutazne $\mathrm{K}=2.5$

1.00 L flask, $0.500 \mathrm{~mol} / \mathrm{L}$ Butane, $1.25 \mathrm{~mol} / \mathrm{L}$ isobutene is at equilibrium.

Then 1.50 mol of Butane is added, ? conc of each.

	Butane	\leftrightarrows	Isobutazne
Initial	0.500	1.25	
Conc adding Butane	$0.500+1.50$	1.25	
Change	$0.500+1.50-\mathrm{x}$	$1.25+\mathrm{x}$	

$\mathrm{K}=2.5=$ [Isobutane] $/[$ Butane $]=(1.25+x) /(0.500+1.50-x)$
$2.50(2.00-x)=1.25+x \quad \rightarrow \quad 5.00-2.50 x=1.25+x$
$5.00-1.25=\mathrm{x}+2.50 \mathrm{x} \quad \rightarrow \quad 3.75=3.50 \mathrm{x}$
$\mathrm{x}=1.07 \mathrm{~mol} / \mathrm{L}$
Butane $=0.500+1.50-\mathrm{x}=0.500+1.50-1.07 \quad=1.07 \mathrm{~mol} / \mathrm{L}$
Isobutane $=1.25+x=1.25+1.07 \quad=2.32 \mathrm{~mol} / \mathrm{L}$

Effect of Volume Changes on Gas Phase Equilibrium

$2 \mathrm{NO}_{2(\mathrm{~g})} \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\mathrm{K}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{NO}_{2}\right]^{2}=170$ at 290 K

If we half the volume of the flask -> Both gas concentrations will double
$\begin{array}{lll}\text { Start: } & {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0280} & {\left[\mathrm{NO}_{2}\right]=0.0128} \\ \text { Volume Halved } & {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0560} & {\left[\mathrm{NO}_{2}\right]=0.0256}\end{array}$
Volume Halved $\quad\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0560 \quad\left[\mathrm{NO}_{2}\right]=0.0256$
$\mathrm{Q}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{NO}_{2}\right]^{2}=(0.0256)^{2} /(0.0560)=84.5$
$\mathrm{K}=170$ is greater than $\mathrm{Q}=84.5 . \quad$ Must increase the amount of Product

1. For gases, for a volume decrease, there is a change in equilibrium to have a smaller number of gas molecules
2. For a volume increase, there is a change in equilibrium to have a larger number of gas molecules
3. For no change in volume, if there is no change in the number of gas molecules going from reactants to products, there is no effect. $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$

Effect of Temperature Changes on Equilibrium Composition

Need to know if the reaction is Exothermic or Endothermic
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO} \quad \Delta \mathrm{H}=+180.6 \mathrm{~kJ} / \mathrm{mol}-\mathrm{rxn} \quad=$ Endothermic
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+$ HEAT $\leftrightarrows 2 \mathrm{NO} \quad \mathrm{Q}=[\mathrm{NO}]_{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$ [HEAT]
If we increase HEAT, Q will decrease. Then K is greater than Q , we shift to form Product
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=-57.1 \mathrm{~kJ} / \mathrm{mol}-\mathrm{rxhn} \quad=$ Endothermic
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{HEAT} \quad \mathrm{Q}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ [HEAT] / $\left[\mathrm{NO}_{2}\right]^{2}$
If we increase HEAT, Q will increase. Then Q is greater than K, we shift to form Reactant

1. Increase the temperature of a system at equilibrium, the equilibrium will shift in the direction that absorbs energy as heat, in the Endothermic Direction
2. Decrease the temperature of the system, the equilibrium will shift in the direction that releases energy as heat - in the Exothermic direction

3. Changing temperature changes K

